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The deformation of a drop in a general 
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(Received 10 September 1968) 

A theoretical method is given €or the determination of the shape of a fluid drop 
in steady and unsteady flows by making an expansion in terms of the drop 
deformation. Effects of fluid viscosity and interfacial tension are taken into 
account. Examples given include the determination of the shape of a drop in 
shear and in hyperbolic flow when each is started impulsively from rest. 

1. Introduction 
Taylor (1934) discussed the behaviour of a fluid drop in shear flow, when the 

effects of fluid viscosity and interfacial tension are taken into account. In con- 
sidering a drop of fluid of viscosity p* suspended in a fluid of viscosity po under- 
going a shear flow of magnitude G, one may note that the behaviour of the drop 
must depend upon the two dimensionless parameters h = p*fpo and k = cr/,uoCa, 
where a is the radius of the drop and the interfacial tension. Taylor considered 
the case of a drop for which interfacial tension effects were dominant over viscous 
effects, i.e. the case for which h = O( 1) and k 9 1, and obtained the drop deforma- 
tion to order k-l. The case for which interfacial tension effects were negligible in 
comparison with viscous effects, i.e. k = O(1) and h 9 1, was also considered; 
the drop deformation was obtained to order h-l. The results obtained for the 
former case were used by Chaffey, Brenner & Mason (1965a, b )  to determine the 
migration of liquid drops in a shear flow near a plane wall. 

It should be noted that for the interfacial tension dominated case, Taylor 
showed that the drop would deform into a spheroid with its major axis at  an 
angle of 45' to the flow, whereas for the viscosity dominated case, it would 
deform into a spheroid with major axis in the direction of the flow. Thus it is seen 
that one cannot expect either of Taylor's results to apply to the case in which k 
and h are both large and of the same order of magnitude. It is to be expected, 
however, that for such a case the drop deformation would be small; and this 
suggests that the case is perhaps amenable to theoretical investigation. 

In the present paper drop deformation is assumed to be small and of order E ,  

where 8 4 1. Expansions of velocity fields are then made in terms of the para- 
meter E ,  no restrictions being placed upon h and k other than those which may 
be implied by the assumption that deformation is small. Thus, rather than make 
expansions in either k-1 or A-l, one makes expansions in E ,  so that all problems 
involving small drop deformation are solved simultaneously. 
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It is found that by this method the problem of the determination of the shape 
of a drop in a general time dependent flow is no more difficult than the determina- 
tion of the shape of a drop placed in a steady shear. Hence, in $82 to 5 of this 
paper, we shall be concerned with the determination of the deformation of a drop 
placed in a general time dependent flow. Then, in $0 6 and 7, the general results 
obtained will be used to examine the behaviour of a drop in shear and hyperbolic 
flow when each of these is started impulsively from rest. The equilibrium shapes 
of a drop in steady shear flow are also obtained and are shown to agree with 
Taylor’s (1934) results for the case in which h = 0(1), k $ 1, and the case in 
which k = O( l), h 9 1. Agreement is also obtained with the experimental results 
of Rumscheidt & Mason (1961). 

2. Method of expansion 
A neutrally buoyant drop of a fluid of viscosity p* is suspended in a fluid of 

viscosity po which is undergoing a motion that deforms the drop from its equi- 
librium, spherical shape. We assume that the radius a of the undeformed drop 
is very much smaller than the length scale L of the basic fluid flow causing the 
drop deformation. If we define V as a characteristic fluid velocity in the neighbour- 
hood of the drop (relative to its centre), then we assume that both the Reynolds 
numbers based upon a, V and the kinematic viscosities of the two fluids are so 
small that one may neglect inertia effects in the neighbourhood of the drop. 
We shall not assume, however, that the Reynolds number based upon the 
length scale L is small. Thus, on this large scale, the basic undisturbed fluid flow 
field will satisfy the full Navier-Stokes equations. Throughout the paper, we 
shall use quantities which have been made dimensionless by the viscosity po, the 
length a and the velocity V ,  unless we state otherwise. 

In  the neighbourhood of the drop, where inertia effects are negligible, the 
undisturbed velocity of the suspending fluid U must satisfy the creeping motion 
equations V2U-QP = 0, 

v.u = 0, 

where P is the corresponding pressure. Since U cannot possess any singularity 
at  the origin, the solution of the equations (2.1) may be written in the form 
derived by Lamb (1932) as 

n 
2(n + n+3 1) (2n + 3) r2vpn- (n + 1) (2% + 3) rpn] 9 

where xn, q5n and pw are solid spherical harmonics of order n. Since the radius a 
of the drop is very much smaller than the length scale L of this undisturbed 
velocity flow field, all terms in the above expression for U, which behave like 
r+n where n > 1, may be neglected. Also, since our axes move with the drop, 
and since the total hydrodynamic force on the drop resulting from the fluid 
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flow must be zero, it follows that there cannot be any term like ro in the expression 
for U. Thus the velocity field U contains only terms which behave like r+l, 
and so 

Hence 

where 

Q1 andS, being time-dependent surface harmonics of orders one and two respec- 
tively. The vorticity o and rate-of-strain tensor eii of this flow field (2.4) are 
functions of time only and are given by 

The undisturbed flow field U may then be written in the form 

where ekk = 0. 
For a drop in the flow field (2.4), the deformation is determined by the two 

dimensionless parameters h = ,u*/po and k = (r/,uo 8. The values of these para- 
meters are assumed to be such that the drop deformation is small. 

By taking the centre of the undeformed drop to be the origin of axes, the 
dimensionless position vector of a general point may be written as r = (rl, r2, r3). 
Thus the equation of the surface of the drop in the deformed state may be repre- 

v, = h j k  W* Tk + e,j rj, (2.8) 

sented by 

where r = (riri)i, E being much smaller than unity. It is in terms of this parameter 
E ,  that the expansions will be made, rather than in terms of the paramekrs 
A-l and k-l. The only restrictions to be placed on h and k are those which are 
implied by the condition that the drop deformation E be small. 

The flow fields inside and outside the undeformed drop r = 1 are defined to 
be u$ and fi0 respectively, and like U must also satisfy (2.1). Hence they are 
given by Lamb's (1932) solution as 

n 
r2Vp,* - n+3  

n= 0 (n+  1)  (2n+3)  

m 

(2.10) 
and 

f i , = V ~ ~ x r + V $ ,  

- 
where x:, $2 and p: are solid spherical harmonics of order n and X-n-l, 
and jj-n-l are solid spherical harmonics of order - n -  1. The values of these 
harmonics are determined by the following boundary conditions on r = 1:  the 
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normal components of u$ and ii, are zero, their tangential components are 
continuous, and the corresponding tangential stresses are also continuous, i.e. 

( 2 . 1 2 )  ug.r = ii.r = 0, 

(ut - u$ . rr) = (ao - ii,. rr,) (2 .13)  

A(p$.r-r.p;.rr) = (Do.r-r.po. rr), ( 2 . 1 4 )  

where p$ and Do are the ‘stress tensors’ corresponding to the velocity fields 
uz and Go respectively, i.e. 

( ~ t ) i j  = -Po*aij+{(ut)i , j+ (ut)j,i), 

( F o h j  = - 4 0 %  + W O ) $ , j  + (UO)j,i).  

In  order to make ( ~ 2 ) ~  and (p& of the same order of magnitude (even if h is 
large), we have defined the dimensionless stress tensor ( P ; ) ~ ~  in terms of internal 
viscosity p*, so that relative to viscosity po the true stress tensor within the drop 
is h(p&. 

The flow fields u* and fi inside and outside the deformed drop are assumed to 
possess expansions in terms of the parameter E ,  which are of the form 

I u* = u$+suT+ ..., 
ii = i i O + E i i 1 +  .... ( 2 . 1 5 )  

Since u*, ut, 8, Go all satisfy the creeping motion equation, so must the velocity 
fields uT and 8,. The boundary conditions for uf and iil are derived from the 
conditions of continuity of tangential and normal velocity and of tangential 
stress on the deformed surface; the difference in normal stress across the surface 
is balanced by interfacial tension forces. All terms of order e2 will be neglected. 

3. Flow in undeformed drop 
The fluid velocity inside and outside an undeformed drop ug and ii, is given by 

(2 .10)  and (2 .11) ,  in which the harmonic functions x:, $:, p;, x-n-l, $-n-l and 
ji-n-l are determined by the boundary conditions (2 .12) ,  (2 .13)  and (2 .14) .  
Corresponding to the velocity fields ug and ii,, one has stress tensors ( P $ - ) ~ ~  and 
(jio)ii respectively, given by 

- 

2n2 - 3 n  - 2 
- n ( 2 n  - 1 )  (p-n-1) &ij] 
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Suppose one lets 
xz = rnQz, $2 = rfflSz, p t  = rnTn, - (3.3) 

(3.4) - r-n-lT - - -  - - 
and x - ~ - ~  = r-n-lQn, = r-n-lS n)  P-n-1- n) 

where QX,  82, TZ, gffl, gn and pn are spherical surface harmonics of order n. 
Then one may write expressions for the tangential and normal components of 
the velocity fields u$ and ii,, and of the tangential and normal components of 
the corresponding stresses on the surface r = 1 ,  in the form 

Substituting these expressions into (2.12), (2.13) and (2.14) ,one obtains 
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The solution of this set of equations is 

28, - 3s2  + gF2 = 0, 

Qf = + Qp 

01 = 0, 

S: +AT: = 8, +- S2, 

2hSg +&AT: = - 8S2 + *!F2 + 2S2, 

- 
QZ = Q n = O ,  if n +  1, 

SZ = S, = T, = 0, if n +  2, 

TZ = 0, if n +  0,2.  

- - 

> (3.9) 

This set of equations has the solution 

h s,, s, = -- 3 

(3.10) 

h + l  

sg = -qxTij 
21 

h + l  
TX = +---S,, Tz = - 

T,h arbitrary. 

Hence, by substituting these values into (3.3) and (3.4), one obtains the following 
velocity fields for U; and ii, from (2.10) and (2.11): 

2 
h + l  

r2v(r2s2) - - r (rz~ , ) ]  V(rQ1)xr----- V(T2S2) + z(h+l) 
3 5 

(3.11) 
2(h + 1) 

h 5h + r(r-a~,)]. ii, = [V(rQ1) x r + V ( T ~ S ~ ) ]  + [ - h+l V(r-3S2) -__ 
h + l  

The arbitrary value of T,* does not contribute to the value of ug and represents 
merely an arbitrary constant pressure within the drop. 

It should be noticed that, for the special case of a drop in a plane shear flow 

(3.12) given by 

the values of Q1 and S, are 

Q1 = $yr1r-l, S, = 4 y ~ ~ r ~ r - ~ .  (3.13) 

u = ( O , O ,  Y 2 ) ,  

Thus the velocity fields inside and outside the drop are given by 
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This agrees with the solution given by Bartok & Mason (1958), which was derived 
from Taylor’s (1932) solution for a drop suspended in a fluid undergoing a hyper- 
bolic flow. 

4. Boundary conditions for u,* and GI 
Having obtained the velocity fields u$ and ii,, in $ 3, we now derive the boundary 

conditions which the first-order velocity fields u; and ii, must satisfy. As stated 
in $ 2 ,  one requires to order E (i) that the normal components of u* and ii are 
Continuous, (ii) that the tangential components of u* and ii are continuous, 
(iii) that the tangential components of the corresponding stresses are continuous, 
and (iv) that the difference in the normal components of the stresses are balanced 
by interfacial tension forces, on the deformed surface 

r = 1 +ef(r,/r). (4.1) 

The value of ut on the surface is given in terms of its value on r = 1 by the relation 

[(u&17=1+cf = [(mi + ~f~j(UO*),,jIr=1+ 0(e2). (4.2) 

Hence, since u* is given by (2.15), it follows that 

In a similar manner, it may be shown that the value of the stress tensor (p*),, 
corresponding to the velocity field u*, has on the deformed surface a value given by 

[(P*)ijI,1+,, = [(mu + c h ( P O * ) i j . k  + 4PZ)ijI7=1 + O(e2). (4.4) 

The unit normal n to the surface (4.1) is in the direction of the gradient of 
(r - 1 - ef). Thus n6 = K(r lr - l -e f , i ) ,  

where K is a constant. Since n,n, = 1, it follows that 

or 

Therefore the unit normal n is given by 

n, = rir-1-eff .a+0(e2) .  (4.5) 

Consider a point P on the deformed surface (4.1) and take (C,r,g) Cartesian 
axes with P as origin and with the g axis in the direction of the normal n to the 
surface. The t; and 7 axes are chosen in such a manner that the (Cc) and (76) planes 
are the principal planes of curvature of the surface at  the point P. Let R, and R, 
be the corresponding principal radii of curvature. Then it may be shown that 



608 R. G .  Cox 

Hence the sum of the principal curvatures is 

( ;; ;;) 1 1  -+- = 2--E 2f+-+- +O(E2). 
Rl R2 

(4.7) 

However, since f is a function only of ri/r, it follows that derivatives off in the 
radial direction are zero. Hence it is seen that 

a y a p  = q c ) ,  

but since the quantity 

so that 

is invariant under an orthogonal transformation we may write this as f , k k .  Thus 

By making use of (4.3), (4.4) and (4.5), one may obtain values for the normal 
and tangential components of velocity u* and stress (p*lij in the form 

where terms of order €2 have been neglected. The expressions for the tangential 
and normal components of the velocity B and stress (,)ij are exactly the ex- 
pressions given in (4.9) with the quantities (@)$, ( U T ) ~ ,  @& and @?)$$ replaced 

by and (FJij respectively. Thus one may now use these ex- 
pressions to write down the boundary conditions (i) to (iv) given a t  the beginning 
of this section. Upon making use of the relations (2.12), (2.13), (2.14) and (4.8), 
one then obtains on r = 1, 

(ZJi, 

(4.10) 
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y[h((p?)ij + f r j  'k(Po*)ij, k -f ,j@o*)ij +f ,irjrk@$)jk}1 

= r[(@l)ijrj + f r j r k ( l ) O ) i j , k - ~ , j ( p O ) i j  +f,irjrk(l)O)jkl, (4*13) 

where Y represents the operation of taking the tangential part, i.e. 

F [ a i ]  = ai - aj rj  ri. (4.14) 

From (3.3) and (3.10) it  is seen that in the expression (3.1) for ( ~ t ) ~ ~ ,  the only 
non-zero spherical harmonics xz, $: and p3,* which appear are 

21 
p,%=+- ( A  + 1) r2S,* 

Hence, since ( x T ) , ~ ~  = 0, it is seen that 

@;)dl = O(l/h) as h -+ 00. (4.15) 

In  the normal stress boundary condition (4.12), terms of order unity will be 
retained, whilst terms of order e are neglected. On the other hand, since no 
restriction has been placed on the quantities h and k, terms in (he) and (ks)  
should be retained, because the parameters A and k could be of order s-1. How- 
ever terms in (4.12) like { -hefrirjrk(p$)ij,k}, which involve (P;)~~, are really of 
order €+I, since by (4.15) (p& is of order A-l if h is large. Hence such terms may 
also be neglected. Thus, to order eo, (4.12) reduces to 

-A{rir , (p~)i j } -he{~ir j (p?)i j }  + ( r i r j ( p O ) i j }  = 2k- k e ( 2 f + f , k k ) *  (4.16) 

The values of {rdrj(g$)ij} and (rirj(po)ij}  are given by (3.5) and (3.6) with values 
of Sz,  T z ,  Sn and T,, as given in (3.10). Hence one may obtain 

9 
r i j  r ( ~ 8 ) ~ ~  = 4s: - +T: - T$ = - ~ + 1 s, - T,*, (4.17) 

(4.18) 

The term { -herirj(p?)ij} appearing in (4.16) is of order unity only if h is of 
order e-1. Hence, for the calculation of (p?)ij in this expression, one may con- 
sider h very large. Thus one may calculate ( P , T ) ~ ~  from the flow field ( u T ) ~  derived 
from (4.10), (4.11) and (4.13), with h + co. In  particular, the values of (Zc,*), 
and used in these equations may be taken to be given by (2.10) and (2.11) 
with the spherical harmonics, xz, $2, p z ,  etc., given by (3.3) and (3.4), where 

(4.19) 

Hence, evaluating (u$)* and (ao)$ in the limit A -+ 00, and obtaining the corre- 
sponding stress tensors (p& and one may find the boundary conditions 
(4.10), (4.11) and (4.13) in the limit h -+ 00, in the form 

} 
Q,T = Q1, S$ = T,* = 0, 

- &, = 0, s, = -s2, F, = - lOS,. 

39 
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Y[(@)i - (%)il = F[5f (8,) ,il, 
y[(~T)ijrjI = 0. 

The boundary condition (4.16) on the normal stress reduces to 

(4.21) 

(4.22) 

he{rirj(pf)fj) = ___ + l6 8, + AT; - 2Jc + ks(2f + f , kk ) .  (4.23) 
h + l  

If the drop is in a fluid which is not moving, then 

f = 0, s, = Q1 = 0,  = 0. 

Hence hT;-2Jc = 0. (4.24) 

Substituting the value of TZ back into (4.23) yields 

(4.25) 

5.  Drop deformation 
The function f(ri /r)  determining drop deformation may be expanded in the form 

n= 2 

where Fn is a spherical surface harmonic of order n. Harmonics of order one and 
zero have been omitted, because they represent a translation and a dilatation of 
the drop. Using spherical polar axes (T,  8,$) with origin at  the centre of the drop, 
one may write 

Now. since on r = 1 

Fn = A,,E(cos 0) eim$, 
m 

it  may be shown by direct substitution that 

Hence (5.3) 

Since uf and fil each satisfy the creeping motion equations they may be 
expanded in the forms 

m 

n=O 
i l l= c 
where 2; 
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&, 8:, Pz, &,, Sn and Tn being spherioal surface harmonics of order n. From the 
above values of uT and GI, one may obtain expressions for the corresponding 
stress tensors (pT)ij and (pJij, which can be substituted into the boundary con- 
ditions (4.20), (4.21), (4.22) and (4.25), to obtain 

" N 

where values off and f,kk have been substituted using the relations (5.1) and 
(5.3). 

From (5.8) and (5.9), it is seen that 

(5.10) 

n3 - 4n - 3 
(n + 1)  (2n  + 3 )  

F;) = ( w) s,, S, + ke(2 - n - n2) pn ~e 2n(n - 1) 8: + 1 
for all n 2 2, 

and that a* 0 -  - 8* 0 -  - p70* = P; = 0. 

It may be shown that [rn(Fn),ieijk(&l),jrk],B = 0, 

so the terms {(Pn) ,ieijk(&l) , jrk],  which appear in (5.6), are spherical surface 
harmonics of order n. Thus, from the first part of (5.6), it is observed that 

@n P;-(Fn),icijk(&l),jrk for all n >, 2,  (5.12) - at = nRz -I- 2( 2n + 3)  

and that ip+AP*  1 0  1 =.o. (5.13) 

(5.11) 

n 

Solving (5.10) for flz and 27: (n 2 2 ) ,  one obtains 

(5.14) 

n(n + 2)  
" = 2(n - 1)  (2n2 + 4n + 3 )  

p; = - (n 2n2 + 1 )  + (2n  4n + + 3 3)  ( ~ c ) - 1 (  (3) s,, X, + ke(2 - n - n2) pn) . 
39-2 
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Substitution of these values into (5.12) yields for all n 2 2, 

- (Fn),<e<jdQl),jrk. (5.15) 
This gives the deformation of the drop as a function of time; the quantities S2 
and Q1 are determined by the undisturbed fluid flow U through the relation 

ul, = eijk(r&l) , i r k  + (r2S2) ,i* (5.16) 

The vorticity o and rate-of-strain tensor eij corresponding to this flow field U is 

therefore given by wi = 2(&?l),i, (5.17) 

eij = (r2S,), ii. (5.18) 

The quantities Fn and S,, being spherical surface harmonics, may be written in 
the form 

(5.19) 

(5.20) 

where FP1 p, .,.pn is an nth-order tensor and S,, a second-order tensor. FplPZ..,pn 
and S,, may be taken to be symmetric with regard to interchange of indices. 
Also, since (r-l),,, = 0, one may take S,, = 0. Thus the substitution of (5.20) 
into the expression (5.18) for eij gives 

eij = 6Sij. (5.21) 

By the use of (5.17) ,(5.15) may be reduced to 

- - n(2n+ 
-- (&)-I (( %+2) S2,S, + ks(2 -n- n2) Fn) . (5.22) 

2(n- 1) (2n2+4n+3) h + l  
By considering the drop shape relative to axes rotating with an angular velocity 
&o, and by representing time derivatives with respect to such axes with DIDt, 
it is seen that 

DF, - - ~. n(2n+ 1) (hs)-l{ (’”̂ ’””) S2, 8, + ke(2 - n - n2) i?!] . (5.23) Dt 2(n - 1) (2n2+ 4n + 3) h + l  

By using (5.19), (5.20) and (5.21), this further reduces to 

and (5.25) 

We note that (5.24), for Fn(n > 2), does not involve the flow field, and that it 
possesses the solution 

(5.26) 

n(n+ 2) (2n+ 1) k 
FPtPz...Pn =cP~...Pnexp(- 2(2n2+4n+3) ( x ) t )  

n(n+2)(2n+l)  k 
so that Fn = { - 2(2n2 + 4% + 3) (x) t ,  ’ 
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where Cn is a surface harmonic of order n and is in fact the value of Fm at 
t = 0. 

Thus, if the sphere starts off in the undeformed state or in a state for which 
Fn = 0 for all n 2 3, then it follows from (5.26) that at  all future times the only 
non-zero harmonic Fn is the one of order 2, i.e. Fn = 0 for n 2 3 for all t > 0. 
However, for an arbitrary initial deformation, i t  is seen that the harmonics 
F‘, for n 2 3, are transient, dying away in a time of order (h/k). For this reason, 
in the following two sections, where examples of drop deformation are given, 
we will consider drops which are initially spherical so that Fn = 0 for all n 2 3; 
the shape of the drop is then spheroidal and given by 

r = I + ~ F  [ - (r- l ) ]  a 2  , 
p q  arparq 7=1 

with given by (5.25). 

(5.27) 

6. Drop in time-dependent shear flow 

in a fluid undergoing a time-dependent shear flow given by 
As an example of the use of the results derived in 0 5, we consider a drop placed 

u = (O,O,y(t)r,), (6.1) 

relative to a set of axes fixed in space, where y(t)  is a given function of time t. 
The vorticity w is then 

(6.2) 0 = (y(% 0, O ) ,  

and the rate-of-strain tensor eij given by 

e23 = e32 = 6 r ( t ) ,  
eii = 0 otherwise. 

In order to use (5.25), one must express eij relative to axes (FlF2, F 3 )  rotating with 
angular velocity +y(t). The relation between this set of axes and the axes (rl, rZ, r3) 
fixed in space is - 

(6.4) 

r1 = r1, 
T 2  = r2 cos a + r3 sin a, 

F3 = - r2 sin a + r3 cos a, 

where a(t) = - y(t’)dt’ x 
If E5$ and ei are the values of the tensors eii and Gi relative to the rotating 

axes (F,, T2,  T 3 ) ,  then 

(6.6) 1 
ZZ2 = eZ2 cos2 a + eZ3 cos a sin a + e32 sin a cos a + e33 sin2 cc , 
Z,, = - e22 sin a cos a + eZ3 cos2 a - e32 sin2 a + e33 sin a cos a, 

Z,, = - eZ2 sin a cos a - eZ3 sin2 a + e32 cos2 a + e33 sin a cos a, 

e33 = + eZ2 sin2 a - e23 sin a cos a - eZ2 sin cos a + e33 cos 2a, 

E,, = eZ1 cos a! + e31 sin a, etc. 

with similar relations between &, and qj. 
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Substituting into (6.6) the values of eJj given in (6.3) yields 

Z22 = &y sin 2a, 

Z33 = - gy sin 2a, 

Z,, = Z32 = + i y  cos 2a, 

Eii = 0 otherwise. 

(6.7) 

Relative to the rotating axes system, the general solution of (5.25) for qj is 

(6.8) 

where the integrand involves the value of eij at all previous times. From (6.7) 
and (6.8) it is seen that the only non-zero components of f;iii are F22 = -p33 
and F23 = F32. Hence qj relative to the non-rotating axes is given by 

- - - 
F22 = FZ2 0092 + F33 sin2 01 - F23 sin a cos 01. - F32 sin a cos a, 

- - 
= F22 cos 2~r. - F23 sin 201, 

F33 = FZ2 sin* a + p33 cos2 a + p23 sin a COB a + F 3 2  sin a cos a, 

F23 = F22 sin a cos a - p33 sin a cos a + p23 cos2 u - F32 sin2 a: 

F32 = FZ2 sin a cos a - F33 sin a COB a - F23 sin2 a + F32 cos2 a: 

Fii = 0 otherwise. 

= - F22 cos 2a + F23 sin 2a, 

= F22 sin za + Fm cos 2a, 
- - 

= F2% sin 201 + F23 cos 2a, 

1 (6.9) 

Therefore, by the substitution of Zij from (6.7) into (6.8), and using the resulting 
expressions for Zi in (6.9), one obtains 

All other components of qi are zero. By the definition of the tensor qi, the shape 
of the drop is r = 1 + ~ F ~ ~ ( r - 1 ) ~ ~ .  r3, 

= 1 + ~ [ 3 l ? ~ ~ ( ~ ~ - r ~ ) + 6 F 2 3 ~ ~ r 3 ] .  (6.11) 

Defining a set of spherical polar axes (r ,  B,$) with the 1-axis as polar axis (figure l), 
it is seen that (6.11) may be put in the alternative form 

r = l+Dsin(2$+,9), (6.12) 

(6.13) 

Equation (6.12) represents a spheroid with semi-axes of lengths 1 - D, 1 and 1 + D,  
the major axis (of length 1 + D )  and minor axis (of length,l - D )  lying in the 

1 where D = ~ E J ( ( F ~ ~ ) ~  + (F23)2)>t 

tanp = F22/F23 [sinP = F 2 ~ / 2 1 ( ( ~ 2 2 ) ~ +  (F23)2}l- 
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2-3 plane, the intermediate axis lying along the 1-axis. If a is the angle the major 
axis of spheroid makes with the 2-axis. (figure 2), then 

a = T ln--I.p- 2 )  (6.14) 
the shape of the drop is now 

r =  l+Dcos2($-a). (6.15) 

If L and B are respectively the length (2 + 20)  and the breadth (2 - 20),  then 

(L  - B)/(L + B)  = D, (6.16) 

FIQTJFZE 1. Co-ordinate system. 

so that the quantity D is the measure of the deformation used by Taylor (1934) 
and Rumscheidt & Mason (1961). 

As a particular case, consider an initially spherical drop placed in a fluid 
at rest, which at a time t = 0 is suddenly given a uniform shearing motion of 
magnitude unity (in our dimensionless variables). Thus 

and by (6.5) 

y( t )  = 0, if t < 0, 
1, if t 3 0; 

a(t) = 0, if t < 0, ) 
it, if t 2 0. 

(6.17) 

(6.18) 

By substituting the values of y(t)  and a(t) from (6.17) and (6.18) into (6.10) and 
evaluating the integrals, one obtains values of l?22, FS3, F23 and B’32 given by 

where 

5(19h+ 16) 
EF22 = -EF33 = 12(h+1){(20k)2+(19h)2} 

x [ - 19h + 4{(20k)2 + (19h)2} e--(20k/19A)t cos (t - p ) ] ,  
5( 19h + 16) 

= EF32 = 12(h+ 1)((20k)2+(19h)2} 
x [ +20k+ 4{(20k)2+ (19h)2}e-(20k/19A)tsin(t-P)], (6.19) 

p = tan-l(20k/19h). (6.20) 
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FIGURE 2. Spheroidal drop shape. D = (L- B) / (L  +B). 
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FIGURE 3. Variation of a and D with time t for the case h = 10, k = 1. 
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The deformation of the drop given by the quantities D and a is determined by 
substituting the values of F22 and F23 from (6.19) into the expressions 

D = 3 d ( & 2 ) 2  + (G)% (6.21) 
a = &r - 3 tan-l (F22/Fc3). (6.22) 

FIGURE 4(a). Plot of (D, a) on polar 
diagram for h = 10, k = 0. 

FIGURE 4(c). Plot of (D, a) on polar dia- 
gram for h = 10, k = 1.0. + represents 
final equilibrium orientation. 

FIGURE 4 ( b ) .  Plot of (D ,  a) on polar dia- 
gram for A = 10, k = 0.1. + represents 
final equilibrium orientation. 

\ 3  u= jn 

FIGURE 4 (d). Plot of (D, a) on polar dia- 
gram for h = 10, k = 10.0. + represents 
final equilibrium orientation. 
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The variation of D and a with time t are shown in figure 3 for the case h = 10, 
k = 1, whilst in figures 4(a) to 4(d) values of D and a are plotted on a polar 
diagram for h = 10 and k = 0, 0.1, 1.0 and 10.0. 

It is seen that after a long time the drop assumes a steady shape with a’ de- 
formation given by 

5(  19h + 16) 
= 4(h + 1) ~ ( ( 2 O l c ) z + o 2 ) ’  

(6.23) 

a = &r + 4 tan-l(19h/20k). (8.24) 

This steady situation is shown in figure 5, in which lines of constant D and a are 
plotted on a k-l, A-l co-ordinatesystem. The deformation given by (6.19), (6.20) 
and (6.21) is seen to be small either when h is large, or when k is large, or when 
both h and k are large. 

075  
a=6Oo 
I u = 50’ 

0.50 
,+ 
b 
II 

I* 

0.25 

0.0 I I I I t  I 

0 1 .o 20 3.0 4.0 5.0 
- 

= A-1 

FIUURE 5. Lines of constant D and a for equilibrium orientation in steady shear flow. 

For a steady shear flow the steady state deformation is given by (6.25) and 

(6.25) 

(6.24). These reduce to 

a an, (6.26) 

for the special case of h = 0(1)  and k -+ co, and to 

D w ih-1, 

a N in, 
(6.27) 

(6.28) 

for k = 0(1)  and h -+ co. It is seen that (6.25) and (6.26) agree with the drop 
shape obtained by Taylor (1934) for a drop in a steady shear flow for the case in 
which interfacial tension effects are dominant over viscous effects. Again, for the 
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opposite situation, in which interfacial tension effects are negligible, (6.27) and 
(6.28) are valid and are seen to agree with Taylor’s results for that case also. 
When the interfacial tension a is zero, k is also zero, and (6.19),  which is then 
valid for h 9 1 ,  becomes 

(cost - l ) ,  
5( 19h + 16) 

EF - 
22 - 228h(h + 1)  

Hence the deformation is given by 

(6 .29)  

(6 .30)  

which represents an undamped periodic oscillation of the drop. Thus for this case, 
the drop never actually attains the equilibrium situation given by (6.27) and 
(6.28),  as would be the case for h 9 1 and Ic small but non-zero. 

7. Drop in hyperbolic flow 
Consider now an initially spherical drop placed in a hyperbolic flow field 

given by u = (0, - Ar,, +Ar3), 

whose magnitude A is zero for all t < 0, and is a constant K for t 2 0, i.e. 

A = 0 for t < 0, 

= K for t 2 0. (7.2) 

Since this flow field possesses zero vorticity, (5.25) may be used directly. The 
rate-of-strain tensor e4j is 

eZ2 = - K ,  eS3 = + K ,  eij = 0 otherwise, for all t 2 0, (7 .3)  
Thus 4, is given by J!za = -F33 * 0, 

.&, = 0 otherwise, 
where F2, satiafies 

aF2, 20k 5 ( 1 9 h + 1 6 ) K  
19h 22 - - 114he(h+ 1 )  

---+-F - 
at 

Hence 

Taking spherical polar axes, as in the previous section, it is seen that the shape 
of the drop for t 2 0 is given by 

r = 1 + 3eFz2 cos 24 

This gives a small deformation and is therefore valid only when k is large. Unlike 
the results for a drop in shear flow given in 5 6, this result is not valid for h large 
and k = O(1) .  
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8. Zero interfacial tension 
It was shown in $ 6  that an initially spherical drop with zero interfacial tension, 

when placed in shear flow impulsively started from rest, would undergo an 
undamped periodic oscillation given by (6.30). This particular case will now be 
examined in detail, and an alternative, more simple argument given for the 
undamped oscillation. 

FIGURE 6. System of rotating axes. 

Thus we consider a drop which is spherical a t  time t = 0, and placed in a shear 

(8.1) 
flow of magnitude unity, i.e. 

It is assumed that the interfacial tension v is zero, and that the viscosity ratio h 
is very much greater than unity. In  this situation, the fluid within the drop, due 
to its very large viscosity relative to that of the suspending medium, will undergo 
a motion which is very approximately a solid rotation of angular velocity 4. 
Thus axes l’, 2‘, 3’ are taken rotating with an angular velocity of + 4 about the 
1-axis and coincident with the axes 1, 2, 3 at the initial instant t = 0. If is the 
angle between the 2 and 2‘ axes (see figure 6), then 

u = (O,O,  r2). 

(8.2) 
- 
a = gt. 

At t = 0, the shear flow U, when taken relative to the rotating axes l’, 2‘, 3’, 
becomes the hyperbolic flow 

(8.3) 

at later times t > 0, this flow field is rotated through an angle ( -  Z) about 
1’ axis. Taylor (1934) gave a formula for the rate of radial extension of a viscous 
drop in hyperbolic flow, which for our present case reduces to 

U = (0 ly’ ly’). 
7 2  3 9 2  2 ,  

dr 5 
dt - 4h 
_ -  - cos 2(4‘  + z - in), 

where 4’ is the azimuthal angle measured from the 2’ axis (see figure 7).  Substi- 
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tuting iii from (8.2) into (8.4), and solving for r with the initial condition that 
r = 1 at t = 0, one obtains 

r = 1+~h-lsin#cos(2$’-$m++t).  (8.5) 

(8.6) 

r = 1+~h- l s in+tcos2{4 -~(n+t ) } .  (8 .7)  

D = th-lsinQt, a = ) ( m + t ) ,  (8.8) 

If 4 is the azimuthal angle measured from the 2-axis, then 

q5 = $‘+Z = $‘+Qt, 

so that, relative to the non-rotating axes, the shape of the drop is 

Hence, with the notation of 8 6, the deformation is given by 

which is just the result for this particular case obtained from the more general 
theory (see (6.30)). 

0 

3 

FIGURE 7. Fluid flow relative to rotating axes. 

9. Discussion of results 
Validity of general results 

In  the derivation of (5.25), the only restriction placed upon h and k was that the 
resulting drop deformation should be small. It was noted in 0 6 that the deforma- 
tion in shear flow was small if either h is large, or k is large, or h and k both large, 
whereas in § 7 ,  the deformation in hyperbolic flow was small only if k: is large. 
For a closer examination of the conditions for small deformation, consider the 
undisturbed flow U in the general form (2.4). Such a flow field, when expressed 
relative to non-rotating axes coincident with principal rate-or-strain axes, takes 
the dimensional form 

(9.1) 

where A,+A,+A,  = 0, (9.2) 
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A,, A ,  and A,  are the principal strain rates, and Q = (Ql, Q,, Q,) is equal to the 
fluid angular velocity or one half the vorticity. Relatiive to non-rotating axes, 
the time derivative DFpq/Dt appearing in (5.25) may be written as 

D a 
- P p q )  = 2 (Fpq) - +pjk  wj Fkq - &qjk wj Fpk. Dt 

Thus, relative to non-rotating axes, (5.25) is 

Examination of (9.3) shows that the drop deformation 

either MIAil Is < l,\ 

or 

is small if for all i, 

(9.4) 

There is also another reason why, under certain circumstances, the general 
theory given in $0 2 to 5 may not give the correct result. It is to be observed that 
in obtaining the boundary condition (4.10), it is assumed that e(af/at) is of order e. 
Thus the theory would not be valid if, for example, (af/at) were of order s-l. 
This would occur, if there were a very quick change in velocity field U for cases 
in which h = O(1) and k is very large. Thus, to cite an example, one notes that 
for a shear started impulsively from rest, the drop shape, which is given by 
(6.17) to (6.22), is for k $ 1, h = O(l),  given approximately by 

D = 3d{(sF'A2 + (eF2J2lj 
a = L n - -  4 tan-1(F22/F23), 

where 

From this it is observed that, whereas 

(EF,,) = O($ and = 0 

and each is therefore small, 

a a 
at at - (EF,,) = O( 1) and - (eF,,) = O( l), 

for all times t of order (hlk). Hence, for small times after the shear is started, 
one cannot expect the theory to  be valid for drops for which h = O(1) and 
k $ 1. However, it  should be noted that even for this case the general theory is 
valid and may be used for all times t p h/k. 
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Drop shape 

Under the above conditions, for which the general theory of $52 to 5 is valid, 
it is seen that for any undisturbed basic flow U, the drop possesses a spheroidal 
shape for all time, if initially it is of spheroidal shape (or in the undeformed 
spherical shape.) However, if initiaIly it has another shape, then the non- 
spheroidal part of the deformation is transient, and will die away in a time of 
order (hlk). 

General flow fields 

The shape of a drop in a shear flow started impulsively from rest is given by 
(6.19) to (6.22), and represents a damped periodic oscillation; the frequency 
of the oscillation is such that for large A, one complete oscillation takes place 
while fluid within the drop undergoes one half a rotation. The damping of this 
oscillation is proportional to klh, or in dimensional quantities to cr/,u*Ga (G 
being the value of the shear). Thus one notes that the damping occurs as a result 
of interfacial tension, the drop undergoing an undamped periodic oscillation 
for the case of zero interfacial tension (see (6.30)). On the other hand, for a drop 
in a hyperbolic flow field started impulsively from rest, there is no oscillation. 
Instead, the drop tends monotonically to an equilibrium shape. 

Steady shear $ow 

The equilibrium shape for a drop in steady shear flow is given by (6.23) and 
(6.24); it tends in the limits h = O ( l ) ,  Ic -+ cc and k = O(l) ,  h --f 00 to the results 
given by Taylor (1934). One notes that, if h is large, the drop deformation is 
small for all values of k, and hence it is of shear G (see figure 5) .  If one were 
slowly to increase G from zero in this case, the initial deformation would be such 
that a = nl4. A further increase in G would cause an increase in both a and 
deformation D until, for large value of G, a -+ &i- and D - :A. This type of be- 
haviour was observed experimentally by Rumscheidt & Mason (1961). 

Rheology of a suspension of drops 

The general theory given in $0 2 to 5 forms a very useful f i s t  step in a theoretical 
investigation of the rheological properties of a suspension of drops. It is hoped 
to investigate this matter further in a future paper. 
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